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It is increasingly common in cognitive science and philosophy of perception to regard 
perceptual processing as a probabilistic engine, taking into account uncertainty in computing 
representations of the distal environment. Models of this kind often postulate probabilistic 
representations, or what we will call probabilistic states. These are states that in some sense 
mark or represent information about the probabilities of distal conditions. It has also been 
argued that perceptual experience itself in some sense represents uncertainty (Morrison 2016). 
In this article, we will first consider three models of sensory activity from perceptual 
neuroscience, namely signal detection theory (SDT), probabilistic population codes (PPC), and 
sampling. We will then reflect on the sense in which the probabilistic states introduced in these 
models are probabilistic representations. To sharpen this discussion, we will compare and 
contrast these probabilistic states to credences as they are understood in epistemology. We will 
suggest that probabilistic representation, in an appropriately robust sense, can be understood as 
a form of analog representation. In the last part of the paper, we apply this to the issue of 
whether conscious experience represents uncertainty - we will interpret this as the claim that 
there are phenomenal features of experience that serve as analog probabilistic representations.  

Keywords: Probabilistic representation; probabilistic experience; population codes; sampling; 
signal detection theory; credence; analogue representation.  

It is increasingly common in cognitive science and philosophy of perception to regard 
perceptual processing as a probabilistic engine, taking into account uncertainty in computing 
representations of the distal environment. Models of this kind often postulate probabilistic 
representations, or what we will call probabilistic states. These are states that in some sense 
represent information about the probabilities of distal conditions. It has also been argued that 
perceptual experience itself in some sense represents uncertainty (Morrison 2016).  

Our concern in this paper is to clarify what these representational states would consist in, were 
they to exist. While the notion of representation is notoriously problematic, the theoretical 
options for understanding it are familiar and widely discussed. Much less familiar, on the other 
hand, is how to understand the idea that perceptual, sensory and conscious states are 
probabilistic representations. What would it mean for the perceptual system to hold to a 
probability of .6 that there is a vertical line in the visual field? What would it be for a perceiver 
to consciously perceive a vertical line in a way that involves uncertainty?   

Our proposal is that probabilistic representations can be understood as a type of analog 
representation, a type that is used in a certain way in a system. In line with this proposal, we 
also argue that conscious representation of uncertainty is best understood in terms of the claim 
that there are phenomenal features of experiences that serve as analog probabilistic 
representations. We will not defend the existence of probabilistic representations in either 
subpersonal processing or in conscious experience, although some of the reasons why theorists 
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have postulated them will be discussed when they are relevant. 
 
The first part of the paper considers subpersonal probabilistic states. In the current empirical 
literature, there are three prominent models that explicitly propose a view of how probabilistic 
information could be encoded in subpersonal perceptual processing: signal detection theory 
(SDT), probabilistic population codes (PPC) and sampling models. Because these models are 
not presented with much clarity in the philosophical literature, we will describe them in some 
detail. To be clear though, our interest is not primarily in the different possible algorithmic 
strategies for probabilistic computation, but rather the different possibilities for representing 
probability itself: what do the probabilistic states in these models consist in?  That said, there is 
an intimate relationship between the individuation of a representation and how it is used 
computationally - for this reason, we will need to discuss relevant computational details. 
Relatedly, there are some well-known probabilistic computational models (such as predictive 
processing models, which are covered in other articles in this special issue,) which do not 
contain a distinctive proposal for how probability is represented, and so we do not consider 
them here (but see Orlandi and Lee 2018).2  
 
We approach the issue of individuating probabilistic states from two angles. On the one hand, 
an obvious point of reference is the extensive discussion of the individuation of credences, or 
degrees of belief, in the formal epistemology literature, which are after all a kind of 
probabilistic mental state. Can sub-personal probabilistic states be treated in a similar way? The 
other angle we will take is via general theories of what subpersonal perceptual representations 
consist in - we think they can be adapted in reasonably straightforward ways to allow for 
probabilistic representation. As mentioned, our proposal is that probabilistic representations can 
be understood as a form of analog representation, and we will take it to be distinctive of analog 
representations that they are states that systematically – through structural resemblance (Beck 
2019) – and exclusively carry information about what they represent. We will return on these 
conditions in section 4.  
 
Before we proceed, two points of clarification. First, our main focus here will be on explicit, 
occurrent representations of the kind exemplified by a bank of neural firings (perhaps) 
representing a probability distribution of distal causes, as opposed to implicit probabilistic 
representations, of the kind exemplified by neuronal connection strengths (perhaps) 
representing conditional probabilities (see Icard 2016). We will briefly comment on this latter 
case below (p. 13). In some recent empirical discussions (e.g., Ma 2012) the notion of an 
explicit probabilistic representation is reserved for cases where a statistic such as the mean or 
variance has been explicitly computed from a probability distribution. In this sense, our 
probabilistic-states would not be explicit.  

This leads to our second point of clarification. To keep things simple, we will mostly talk as if 
the probabilistic states we are discussing are all representations of posterior probabilities (e.g., 
the probability that a certain distal element like a vertical line is present). However, theories on 
which representations of likelihood functions, and higher-order statistics such as the mean or 

 
2 There is also some literature on whether predictive processing models posit representations at all. See 
Gładziejewski (2016), Kiefer and Hohwy (2018) and Kirchhoff and Robertson (2018).  
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variance of a distribution, are also common in the kind of modelling we are interested in. We 
intend our account to apply to these cases as well (so when we say “probabilities”, we often 
really mean “probabilities or likelihoods”) and will mention them when they become relevant.3 

1. The Varieties of Subpersonal Probabilistic States.  

We begin by describing the three theories just mentioned: signal detection theory, probabilistic 
population codes and sampling models. These are computational models designed to help 
explain how, in the presence of underdetermination and noise, neurons in sensory areas of the 
brain represent information in a form that allows the reliable computation of an accurate 
perception of distal stimulus features, and allows the perceiver to successfully make decisions 
and judgments based on this perception.  
 
1.1 Signal Detection Theory  

To explain in an intuitive way the mechanics of the three models, and to make vivid why they 
are the natural options to consider, we will use an extended metaphor. Suppose you are 
interested in measuring the direction that the wind is coming from, using windmills that respond 
in a fairly reliable but also somewhat indeterministic way to wind coming in the direction they 
are facing; the windmills are also driven, albeit less strongly, by wind coming at non-
perpendicular angles.   

To start with a simple case of the kind considered by signal detection theory, suppose you have 
only one windmill, and you are interested in using it to determine whether the prevailing wind 
direction is from the west (which we will define henceforth as “within 5 degrees of westward”). 
You might then face it in a westerly direction. You take a single reading of how fast it is 
turning. You are aware that the windmill might turn in the absence of westerly wind (we are 
dealing with a noisy process), but the more strongly it turns, the more likely it is that the wind is 
indeed westerly. We might also assume here that you know that the average wind speed is fairly 
constant, so we can ignore this other source of variation in propellor speed.  

In this situation, we have only two relevant parameters - which direction the windmill is facing, 
and how fast it is currently turning. We suppose that this enables us to read off a single 
probability for the hypothesis of interest; for example, we can imagine using a chart illustrating 
a monotonic function from propeller speeds to probabilities of westerly wind.   

 
3 We anticipate some skepticism about whether likelihoods are the kind of feature that could be presented in 
experience (e.g., Morrison (personal communication) suggested this skepticism to us). If the likelihood is 
understood as the probability of our sensory evidence given the hypothesized state of the world, then one might 
think that representing it in experience would require a strange kind of self-referential content. Whereas, posterior 
probabilities can just be more straightforwardly attributed to external events (it might be thought). However, in this 
paper we reject the view that some such analysis of what a likelihood is (or what a posterior is, for that matter) 
would have to be explicitly reflected in phenomenology. We return to this point in section 5.  

 
 



4 

More specifically, signal detection theory theorizes this “reading of probability” in terms of two 
likelihood distributions (i.e., functions telling you the probabilities of signals given stimulus 
values), one for the probability of different speeds of spinning when wind from the west is 
present (target present) and one for when it is absent (target absent) (see fig. 1). This gives us 
the likelihood ratio for target present vs target absent given a particular signal strength. If we 
assume a flat prior, this is proportional to the posterior probability -- that is, to the probability of 
westward wind given the spinning of the windmill. If we include priors, then by Bayes theorem, 
we must also weight our likelihoods by the priors to calculate the posterior. 

This modelling of how the signal responds to the target is referred to as the sensory stage of 
signal detection theory (Green and Swets 1966, Gescheider 1976). There is a further decision 
stage where we imagine a subject observing the windmill and making a decision as to whether 
wind is coming from the west, based on how strong the signal is. SDT assumes they use a 
threshold value, called a criterion. The problem of setting a criterion in a rational way can be 
given a Bayesian analysis, where we consider an ideal observer who is equipped with 
knowledge of the relevant likelihood functions and a prior, and a cost function that deals with 
the problem of how to trade-off between false positives and false negatives. For example, if it’s 
very important to not miss westerly wind when it is present, then we might set a low, liberal 
propellor speed as our criterion, even though there is a fairly high chance that this signal could 
also occur when wind is coming from a different direction. 

 

[Fig. 1]  

One of the key insights of SDT is that we can measure how good the signal is for detecting the 
target in a way that is independent of this decision stage. This is given by the signal-to-noise 
ratio, that is by how far apart the target-present and target-absent distributions are (usually 
given by a measure “d-primed” that is proportional to the variances of the distributions and the 
difference between their means). It’s true that if we have a very conservative criterion for 
westerly wind, then we may miss many more cases of westerly wind than an individual who 
sets a very liberal criterion. But that doesn’t mean we are worse at detecting westerly wind in 
the relevant sense. 

We have been describing the result of setting a criterion -- the “decision” -- as a binary state, 
where the outcome is “west wind” or “not west wind”. But the result of the decision could also 
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be a state that reports on a 1 to 10 scale how probable it is that the wind is coming from the 
west, and/or how probable it is that it is not coming from the west, or choosing an action that is 
appropriate given how probable the target state is. Thus. the decision could reflect the posteriors 
in a more systematic way than we get from a mere binary decision, a point we will return to 
later.  

In the neuronal case, neurons and their activation strengths are analogous to the windmill and 
the speed at which it turns. Instead of thinking of a neuron as tuned to the presence of wind, we 
can think of it as, say, tuned to the presence of a predator. In this case, the signal is a neural 
firing rate (or a functionally analogous neurally implemented signal) not a speed of spinning. 
The continuously variable strength of the signal functions to indicate the probability that a 
predator is present. An appropriate “decision” to behave in a certain way can be based on the 
signal strength, for example the agent might act with caution with a moderate predator signal, or 
run away when the signal is strong.  

1.2 Probabilistic Population Codes  

Now suppose we want more detailed information about the probabilities of different wind 
directions, not just westerly wind. Even with just one west-facing windmill, we potentially have 
information about other wind directions - for example, since south-west wind also drives the 
west-facing windmill, if the windmill is spinning a certain amount when we measure, this might 
increase to some degree our confidence in south-westerly wind. Indeed, if the westerly windmill 
turns at low speed, then this might even be a better indicator of south-westerly wind than 
westerly wind. It might even be a better indication of southwest wind than the reading from a 
south-west facing windmill (Pouget et al 2000 note that firing rates of neurons whose tuning 
curves are slightly offset from a target stimulus value can be better evidence for that value than 
neurons directly tuned to it). 

This extension becomes interesting with the further development of having many windmills 
which we can set up facing in different directions -- a “population” of windmills. Here’s how 
we would use them as a “Probabilistic Population Code” (Ma et al 2006, Ma & Jazayeri 2014). 
Now we are not just interested in whether wind is coming from the west, but also interested in 
the probability, for every possible wind direction, that it is the prevailing wind direction. We use 
a single reading of propellor speeds from our bank to determine this. We consider each wind 
direction in turn, and use all the propellor speeds as data for that direction. For example, if I am  
interested in westerly wind, then I get good evidence not just from the reading on the westerly 
windmill, but also from all the windmills that are facing in directions not too far from the west.  
In principle, if I know, for every windmill, the probability of different windmill speeds given 
westerly wind vs other wind directions (the “likelihoods”), I can calculate the posterior 
probability of westerly wind.   

In probabilistic population code models, the response of each windmill when wind from each of 
the possible directions is present is plotted in a “tuning curve” whose peak corresponds to the 
preferred wind direction of a particular windmill. PPC models tend to separate a sensory stage 
and a decision stage where, like in SDT, we imagine an ideal Bayesian observer who combines 
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the windmill readouts with knowledge of the tuning curves (i.e., likelihood distributions) (and 
possibly a prior) to calculate the probability of wind from a particular direction. This calculation 
could be completely intractable, unless we make some assumptions about the form the 
likelihood functions take. A central theoretical result of the literature on population codes is that 
if we assume (realistically) that noise comes from the family of “Poisson-like” distributions 
(which have the feature that their mean and variance are proportional), then we can calculate the 
log likelihood of a given wind direction as a fixed linear combination of the different windmill 
speeds. From the log likelihood we can, in turn, calculate the likelihood with a fairly easy 
mathematical operation. This has some big computational advantages we will discuss below. In 
some PPC models (Jazayeri and Movshon 2006), this leads to the postulation of a second stage 
population code, where each neuron’s firing rate linearly represents the log likelihood of a 
single hypothesis (by analogy, picture each windmill only representing the likelihood of a single 
wind direction).   
 

1.3 Sampling Models  

Even with the Poisson noise assumption, the computations involved in standard models of PPC 
are quite intensive, because every neuron in the code is data for every hypothesis. Sampling 
models propose a simpler one-hypothesis-per-neuron picture of how neurons represent 
probability. There are a variety of different models of this kind in the literature. We will discuss 
three ways of developing a sampling model, a synchronic version, and two diachronic versions.   

The basic idea behind sampling is to simplify the problem of computing over probability 
distributions by replacing them with a set of representative samples, which can be defined as 
items that are used to stand in for the different hypotheses in the state space (for example, 
hypothesis about what direction the wind is coming from). A theory will postulate a generative 
process that produces samples with probabilities that (ideally) will match the posterior 
distribution we are interested in. So, for example, if we want to know the proportion of white 
and black balls in an urn (and so the probability of randomly pulling out a white ball), the 
generative process of pulling out a single ball and then replacing it will produce samples with 
representative statistics; the more times we sample, the higher chance we have of a 
representative set of samples. As we will illustrate momentarily, further possible features of 
theories are that (1)  weights on samples (e.g. the firing rate of a neuron that stands for a 
particular state), are used in  conjunction with numbers of samples to play the representative 
role - rather than summing  samples directly, we sum them based on their weights; (2) we deal 
with large or infinite state  spaces by pre-selecting only a small number of states to get potential 
samples from; (3) we  postulate an algorithm as part of the generative process, whose iterations 
generate a gradually  more representative set of samples (e.g. a particle filter (see below)).   

In one kind of sampling model, samples are produced synchronically - e.g., a synchronic firing 
pattern across a set of neurons might be treated as a set of samples (Lee and Mumford 2003, 
Hoyer and Hyvarnanin 2003). By analogy, consider again the bank of windmills used to 
measure different wind directions. Whereas in PPC each windmill was used as data for every 
direction, we now only treat each windmill as giving us information, in the form of a potential 
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sample, about one wind direction. Since we have only finitely many fixed-direction windmills, 
we can only get samples from finitely many of the infinitely many wind directions, those that 
we preselect (confusingly, one could also naturally describe this pre-selection process as 
“sampling”, but here merely setting things up to get information about, say, northerly, north-
north-westerly, and north-north-easterly wind is not the same as actually getting this 
information, which is what we mean by “sampling”). We may also choose to make things 
simpler by preselecting only a subset of all the windmills that we have (e.g.  160 of 1000). 
These pre-selected directions and windmills might be initially chosen at random, or strategically 
according to our prior sense of where the wind might be. Once the windmills are set, the rest of 
the generative process is simply the wind producing a set of windmill speeds, which then can be 
interpreted as representative samples in one of two ways. To get a “number of samples” style of 
representation, picture that we put 160 windmills between each of 16 compass directions, so 10 
like-facing windmills in each direction we want to sample from; and then take the generated 
number as those whose speed  goes above a certain threshold - so e.g. we might get 8 samples 
in a northerly direction, and 2  samples each in a north-north-westerly and north-north-easterly 
direction. If weights are used as well (see Lee and Mumford (2003)), then instead of using a 
threshold, for each direction we sum across our 10 windmills based on their propellor speed, to 
get a total sample strength in that direction. If the generative process is set up nicely, the 
proportions of these numbers/strengths are approximately proportional to the relative 
probabilities/likelihoods of the relevant hypotheses (so e.g. the probability of north wind is 8/12 
in our example). Our samples therefore give us a fairly literal depiction of the probability 
distribution we are interested in (e.g., probability of wind directions given readings), albeit a 
discrete approximation of it. The more samples we have, the better the approximation (and if 
we are using weights, how well-calibrated our propellors are also matters). In cases where we 
pre-selected, we must accommodate the fact that we ignored many wind-directions that we also 
want to assign probabilities/likelihoods to; this can be dealt with by a rational interpreter of the 
samples through interpolation - e.g. assuming that the density function varies smoothly between 
the hypotheses we have sampled on (or similarly, one can think in terms of sample density in a 
region of hypothesis space as a proxy for probability density in that region).  
 
Other models are diachronic, involving samples produced over a period of time. In one kind of 
diachronic model, we have an iterative algorithm that produces a better and better set of 
synchronic samples (so it’s an extension of the generative process). For example, suppose at the 
first step, we pick oriented windmills fairly randomly. By reading their speeds, we discover that 
some are probably facing away from the wind, and so not telling us much that is interesting 
about wind direction, while others are better predictors. So, we resample - we redistribute our 
pre-selected windmills in a biased way, such that they are more likely to be positioned in 
directions where we had higher wind-speed readings in the previous round. We now take 
another set of readings and repeat the process. As we continue, our samples get better and better 
tuned towards the direction that the wind is coming from.   

This is a simple version of an algorithm known as the particle filter. It has been used to model 
how hierarchical bayesian inference could be achieved in the visual system (Lee and Mumford 
2003). The system is modelled as a series of levels, each representing features at a different 
level of abstraction. At each level, we have a set of weighted samples (known as “particles”) 
representing a distribution over the stimulus feature represented at that level. At each iterative 
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step we “resample” based on both the likelihood of these samples given bottom-up evidence 
from the level below, and a prior generated from the level above.  

There are also diachronic models where our representative samples do not exist simultaneously 
at all, but rather are produced in a temporal sequence (Fiser et al 2010, Orban et al 2016).  
Suppose we have just one windmill but in this example, the windmill is capable of rotating. It is 
pushed in the direction of the prevailing wind, albeit in a very noisy indeterministic way, due to 
the non-uniformity of the wind itself, and the rusty bearings inside it. Rather than measuring its 
speed, we simply measure what direction it is facing at a given time. If I make, say, 100 
measurements over a period of time, I would expect a larger proportion of measurements 
around the prevailing wind direction than other directions. As before, if things are set up very 
nicely, there could even be a simple linear relationship between the relative probabilities of 
wind directions, and the relative numbers of readings (or “samples”) in those directions. So, if 
out of 100 measurements, I find that the windmill is oriented west 60 times, north-west 20 
times, north 10 times and south 10 times, and things are set up nicely, I am in a position to 
know that the probabilities of wind directions given these readings are directly proportional. 4 

Sampling models rely less on a decision stage than other models, in that they provide the most 
literal rendition of the probabilities of states, which therefore does not require any further 
“decoding”: the system can use individual probabilities and do bayesian calculations on them 
by directly using the sample numbers/weights. They also do not require Poisson-like noise, as 
with PPC, but they do make the strong assumption that the distribution of samples will tend to 
match the probabilities of states. In this sense, they “make a virtue of noise” (Hoyer and 
Hyvarinen 2003).   

In what follows we will not assess the adequacy of sampling or of the other models we have 
been describing. We take the issue of accuracy to be largely empirical. That said, one might 
already be worried from this presentation that the appeal to ideal Bayesian observers armed 
with likelihood functions they use to interpret signals in a rational way is already highly 
idealized or metaphorical, and so be unclear what the literal sense is in which these models 
postulate probabilistic representations. The modelers can certainly understand the function of 
the system in terms of the probabilities of neuronal activation patterns, but what the modelers 
do is not what the system modeled does.  

A common way to develop this worry is by appeal to Marr’s famous distinction between levels 
of explanation (Marr 1982). Because Marr’s distinction is widely known and cited, we will not 
rehearse it here. The basic point is that skeptics of probabilistic representations in perception 
can argue that while the function of perceptual systems can be understood in a Bayesian way at 

 
4 One can also have a similar model involving a population of neurons at a given time representing a single stimulus 
configuration, and the population cycling through different representations over time at a rate proportional to the 
probability of the stimulus configuration (Orban et al 2016)). Relatedly, one can have a synchronic analog of this 
“cycling neuron” (or “rotating windmill”) model, where we have many copies of the neuron/windmill 
simultaneously, each capable of indicating the full range of wind directions but only indicating one at given time, 
with probability proportional to the probability of that wind direction. Again, number of samples (or sample 
density), can then be taken as a proxy for the probability of wind from a given direction (or range of directions).  
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the computational level, such systems do not genuinely use probabilistic representations at the 
algorithmic level. The function of many systems, including plants, can be understood in 
Bayesian terms without using a Bayesian algorithm (Block 2018). In this context, models of 
sensory and perceptual processing that posit probabilistic representations have been criticized 
for failing to use a control class -- an alternative algorithm that can potentially account for just 
the same kind of Bayes optimal performance without using probabilistic information (Bowers et 
al. 2012).   

Although the probability distributions in SDT, PPC and sampling models can play a role merely 
as part of computational-level just-so stories, it’s also true that these models postulate states that 
could be probabilistic representations in a robust sense (the signals, populations of signals, and 
sets of samples), and postulate operations on these states that at least approximate the 
operations of the ideal agent. That’s why they are interesting for our purposes. Indeed, if one is 
interested in what makes these states count as probabilistic representations, how they are 
actually used by the system, and in particular how they are used, at least approximately, in a 
probabilistically appropriate way in computations, is surely of central concern.  

Bearing this in mind, we now turn to examining in more detail the crucial issue of the 
individuation of probabilistic states. It’s useful here to distinguish two (interrelated) issues. 
First, a probability distribution is a structured mathematical object, and it is being used here to 
model or measure an internal state in a way analogous to how real numbers can be used to 
model physical quantities. This issue raises important measurement theoretic questions: how 
uniquely does the structure and role (perhaps including connections to the environment) of the 
probabilistic state determine a given probability distribution? Are there other kinds of 
mathematical objects (perhaps with less structure) that could be used equally well in this 
context? The second issue is this: there is more to saying that we are representing probability 
than merely that a certain kind of measure on hypotheses can be associated with a state. What 
makes that measure a probability measure, rather than some other kind of measure? 
Presumably, this has to do with it being used in a probabilistically appropriate way. But what 
exactly does this mean in the context of sub-personal probabilistic states? 

Our focus here will be more on the latter issue, even though the former is also very important 
(for example, we would need to consider it to understand how much indeterminacy there is in 
the content of probabilistic states). We begin by approaching it by comparing the individuation 
of probabilistic states with the individuation of credences. 

2. Comparing Subpersonal Probabilistic states and Credences 

Credences (aka degrees of belief), as they have been theorized in work in formal epistemology, 
can be understood as mental states which are, in a sense, probabilistic representations. Much 
work has already been done to address, for credences, the two issues just mentioned, so a 
comparison with our target states is a natural place to start. 

Philosophical work on the notion of credence starts with the intuitive idea of believing 
something with a certain level of confidence, and then proposes a notion of credence that 
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extends and  refines the intuitive notion in various ways (thereby making it controversial 
whether we even  have credences) (Sturgeon 2020). For current purposes, we will understand 
credences as having the following features:  

(1) Credences are real functional properties of doxastic states.  
(2) They are measurable on a ratio scale and have a maximum value (probability 1 or 100% 
confidence).  
(3) They assign values to members of a state space.  
(4) They interact with utilities to produce behavior.  
(5) They are subject to rational norms (laws of probability, laws of updating, norms of decision 
theory, etc.).  
(6) They are subject to functional constraints that correspond to these norms (e.g. the system 
must approximately obey the norms to count as having credences).  
(7) They are a feature of attitude rather than content.  
 
Let’s unpack these ideas, starting with (1)-(3). Credences are a kind of belief, or belief-like 
state, which differ from all-or nothing beliefs by including an additional vehicle component that 
assigns a weight to the proposition represented by the belief (the representation of the content 
being the other component - e.g., a sentence in the language of thought). Models that postulate 
credences also require there to be a state-space - an (ideally exhaustive) range of alternative 
hypotheses to which different degrees of confidence are assigned. If we have a finite number of 
hypotheses, then we can assign non-zero credence to every hypothesis. But we can also deal 
with the continuous analog of a finite space, by treating confidences as holding primarily over 
hypotheses about ranges of values rather than individual values. 
 
Classic work on credence in epistemology and decision theory, under the influence of seminal 
discussions by Ramsey and De Finetti, proposes that we ignore the phenomenal dimension of 
confidence (e.g. that feeling of being really certain about something), treating confidence in a   
purely functional, or even behaviorist way. When we consider experiential confidence later, we 
will reinstate this phenomenal criterion, although the phenomenal features we are interested in 
need not feel “confidence-like”.   
 
This classic work addresses the measurement theoretic issue, arguing that we can measure 
confidence on a ratio scale, not just an ordinal  scale, so that we can make sense of claims like 
“I am twice as confident that the wind is coming  from the west than the east”, and that there is 
a maximum level of confidence (that we can think of as confidence 1 or 100%), so that, given 
the ratio scale assumption, individual confidences correspond to precise numbers between 0 and 
1, or precise percentages (e.g. I am 67% confident  that the wind is coming from the west). The 
models we are looking at also assume ratio-scaled probabilities - for example, ratios between 
numbers of samples represent probability ratios in sampling models. Exact credence-ratios for 
beliefs have been challenged as psychologically unrealistic; by contrast, the accounts in 
perceptual neuroscience we are considering explicitly tell us what grounds the analogous ratios 
(e.g. sample-ratios or firing-rate ratios), and so an analogous commitment is less obviously 
problematic.  
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Importantly, none of the candidate probabilistic-representations we will consider are beliefs or 
belief-like; in particular they do not postulate separate vehicle components for representing the 
state of the world and the level of credence. For example, the signal on which a decision is 
made in SDT is an unstructured state (akin to the speed of a propellor) which does not involve 
any conceptual structure or other complex representational structure, such as imagistic 
structure. With the more complex states we get in PPC and sampling models, we have more 
structure and therefore potentially more representational structure, although the structure 
mostly functions to make explicit the credence-like properties of the state, and not to provide a 
structured representation of the propositional content involved (e.g., we do not have separate 
elements that mean “wind” and “west” combined into a sentence). In this sense, these 
perceptual states are rather similar to single-neuron detectors. One could in principle augment 
these accounts with a more explicit structured representation of the content linked to the 
credence like elements, but we are not aware of any models that do this.   

A further property of credences is that they are subject to rational constraints or norms. The 
least controversial norms correspond to the laws of probability. For example, one law of 
probability is that the probability of the conjunction of two independent events is the product of 
their probabilities. Correspondingly, the rational confidence to have in the conjunction of two 
independent events is the product of confidences in the conjuncts. Many also believe in further 
rational constraints, for example constraints for updating credences based on new evidence, 
such as versions of conditionalization, or constraints on prior credences (e.g., the principle of 
indifference). In decision theory, there are also proposals for rational constraints on how 
credences ought to interact with utilities (the analogue for credence of how much you like 
something), to produce rational behavior. Although it is extremely unrealistic to suppose that 
agents always conform to these rational norms, they can nonetheless be part of an account of 
what individuates credences, in the sense that they generate functional constraints. For example, 
one might suppose that a system has to at least approximately satisfy these norms to count as 
having credences (a credence-involving version of the intentional stance has to be useful and 
explanatory), and it can only do this if it functions in certain ways.  

The extent to which similar norms also individuate subpersonal probabilistic representations in 
a similar way is a central issue here. Plausibly, and as we will argue below, to count as a 
probabilistic representation in a robust sense, a state ought to be used inferentially in a way that 
respects similar probabilistic norms. For example, below we will discuss the ways in which 
PPCs can be used in probabilistically rational inferences to produce veridical percepts. 
However, there may be important limits to the analogy with the role of credences. A key point 
is that an appeal to the way utilities and credences combine to produce rational behaviors 
probably won’t always easily transfer to perceptual probabilistic representations. For example, a 
traditional way of understanding subjective probability is in terms of propensities to bet (De 
Finetti 1937/1964). The relative confidence that one has in two propositions should manifest 
itself in what one takes to be fair betting odds for these propositions - for example, if I am 0.6 
confident that the wind is coming from the west, then I should be prepared to accept 60/40 odds 
or better from a bookie on this (assuming that I value money in a certain way, that I don’t 
disvalue taking risks etc). Since our visual systems don’t accept odds from bookies, and do not 
do anything analogous (perhaps a less obvious assumption), then such an account will not 
apply.  Instead, the analog of rational behavior will be the output of a perceptual task, as it 
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might be modelled at Marr’s computational level. Weights found in perceptual systems can be 
interpreted as probabilities, provided they take part in computations that are then seen to make 
rational sense, given the computational task the system is trying to perform. If the system is 
ultimately aiming at an accurate representation, such an account will be analogous to the 
account of credences we would give for a “pure enquirer” who forms beliefs based on 
probabilistic reasoning, but who does not act in the world and so has no use for a cost function.  

A cost function can also play a role in modelling perceptual processing, but typically in a way 
different from the “betting propensity” kind of model. For example, we saw earlier that a cost 
function can be implicit in the way that the system trades off between false positives and false 
negatives. It should also be noted that given the intractability of many Bayesian computational 
problems, rather than directly following the optimal rational norms, the system may be 
following heuristics that merely give results that approximate such ideally rational rule 
following, perhaps only in a limited range of contexts. We allow that following such heuristics 
can still be a way to “use weights as probabilities”; since some of these heuristics may have no 
analogs at the personal level, this is another potential disanalogy with credences.  

Traditional approaches to credence like De Finetti’s are notoriously behaviorist; for both 
credences and sub personal probabilistic-representations, we may prefer a functionalist view. 
For credences, an example functionalist position might say that credences and utilities are real 
aspects of internal states that are functionally individuated in terms of their interacting via 
expected utility calculations to produce choices between behaviors. In this way, credences are 
not just summaries of behavior or behavioral dispositions, but real internal causes of behavior. 
Similarly, the probabilistic-states that we are considering are real causally active internal states, 
that may be individuated by computations comparable to, but perhaps different from expected 
utility calculations.   

We will remark in passing here that Icard’s recent account of subpersonal subjective 
probabilities as sampling propensities doesn’t meet this functionalist desideratum (Icard 2016).  
Roughly, Icard treats a generative process in the brain that produces samples as implicitly 
having certain subjective conditional probabilities, provided it behaves as if it represents those 
conditional probabilities in the way it produces samples (i.e., the long run sample statistics 
match the represented probabilities). Treating implicit knowledge in such a behaviorist way has 
long been a temptation, but there are also theoretical reasons for pushing for a more 
functionalist account. As Davies (1995) has argued, ascriptions of implicit knowledge can be 
understood as putting constraints on the causal structure of the system, and therefore offering a 
deeper explanation of why the system has the behavioral dispositions it has (e.g., its behavior 
isn’t just generated by a giant lookup table). Another way to put the same point is that unless 
our theory generates such constraints on the causal structure of processing, it is really only a 
computational-level account, at best explaining the input-output function in a teleological way 
by comparison with an ideal standard. Future work on the implicit representation of conditional 
probabilities could try to articulate such constraints in terms of features like neural connection 
strengths, to obtain a more realist-functionalist algorithmic-level perspective. Here we set aside 
implicit conditional probabilities to focus on explicit probabilistic representations.  
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Credence is also traditionally viewed as an aspect of the attitude of a belief rather than the 
content (Titlebaum 2019), although there are exceptions (Moss 2018). There is a difference 
between having an 80% credence in a westerly wind and believing that the probability of a 
westerly wind is 80%. One reason for drawing this distinction is that beliefs about probability 
require the concept of probability, but one could have confidence levels without this 
sophistication (Gross 2020, p. 383). Does this distinction apply to perceptual states also? We 
don’t think it will do much theoretical work in the domain we are interested in, because we are 
not dealing with structured propositional states of the kind that could explicitly involve the 
concept of probability. That said, it is more natural to regard our representational weights as 
aspects of attitude rather than content, just because the content (i.e., the state space) is 
determined externally by what our neuronal signals respond to in the environment, whereas our 
subjective probabilities are an aspect of the internal functional role of the states that can be 
treated quite separately from whatever gives them their content. We will further develop our 
understanding of this probabilistic role in the next two sections. 

Taking stock to conclude this section: our probabilistic-states may differ from credences in:  

(1) Not being belief-like, in particular by not explicitly representing their contents as a separate 
structured component.  
(2) Not interacting with utilities to produce rational behavior according to the norms of decision 
theory.  
(3) Not being functionally individuated by exactly the same set of rational norms as credences.   
(4) Not fully sustaining the same distinction between probabilistic contents and attitudes.  

3. Thin Probabilistic Representations in Perception  

We now consider our three empirical models from a different angle, through the philosophical 
theory of mental representation, considering how a variety of accounts of representation can be 
adapted for our purposes. We will first focus on thinner notions of representation, and then 
discuss a more robust sense in which SDT, PPC and sampling may introduce probabilistic 
representations in perception.   

Because they can be successfully used to establish probabilities, the windmills and neurons as 
modeled in SDT, PPC and sampling might be said to “carry probabilistic information”. One 
way to develop this idea is in terms of the probabilistic informational content theorized by 
Skyrms (2010), inspired by Shannon’s notion of information (despite the fact that this is not 
typically thought to be useful in understanding the content of a signal). Skyrms’ notion differs 
from the familiar notion of propositional content, in that propositional content asserts that a 
particular state of affairs obtains (ruling out others that do not obtain), whereas informational 
content communicates how probable different states of affairs are. Specifically, the 
informational content in a signal consists in how the signal affects probabilities (2010, p. 34), 
and can be described by a vector whose entries correspond to states in the state space. If a given 
signal “moves” the probability of a state from 1/10 to 9/10, for example, then the signal carries 
probabilistic information about the state, which can be represented as an entry of 0.8 in the 
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vector slot for that state. (One could also envisage variants of Skyrms idea where the entries in 
the vector are instead posterior probabilities (Godfrey-Smith 2012), or likelihoods).  

A spinning, westward-facing windmill carries informational content about the probability of 
westward wind because the spinning corresponds to an increase in the probability of westward 
wind being present. Ditto for neurons that are tuned to certain environmental elements and 
increase their firings in the presence of the elements. Ditto for groups of windmills, or groups of 
neurons.  Skyrms’ notion of informational content, however, does not require that this 
probabilistic content be in any sense used appropriately or made explicit to the system itself, 
and this is typically seen as an important constraint on a thicker notion of mental representation. 
Informational content is ubiquitous in nature. Neural activity “moves” the probability of states 
of affairs that the neurons are presumed to be tuned to, but it also moves the probability of the 
presence of serotonin and melatonin in the brain. Yet we don’t generally regard the firing of 
neurons as signals of serotonin levels. A state that merely affects probabilities is certainly a 
useful causal intermediary, but, in Ramsey’s terminology, it is not thereby also a state that is 
playing a representational role. 

Similar considerations come up when we add the teleo-functional idea that in addition to having 
informational content a signal should have the selected function of carrying probabilistic 
information in a system (Dretske 1997). Although a neuron’s firing response and a windmill’s 
speed of spinning may be designed, and selected for co-varying with the increased probability 
of a certain state of affairs, it is questionable whether this delivers a robust notion of 
representation.  States that have evolved to co-vary with environmental parameters are 
ubiquitous in nature and appear in plants, and in bacteria. For example, a cell might respond in a 
variable way to the concentration of a chemical cue in a way that a theorist could fruitfully 
model in terms of a probability distribution over possible sources of the cue; the chemical 
receptors in the cell thereby may have the selected function of carrying probabilistic 
information, but they are not probabilistic representations in any robust sense. 

For these reasons, we are motivated to look for further conditions. On the question of what, in 
general, makes a state a representation with a certain content, Ramsey (2007) makes the useful 
move of suggesting a divide-and-conquer strategy, whereby we distinguish issues of  
representational-status - what makes something deserve the name “representation” in the first 
place - and the issue of representational content - given that it is a representation, what makes it 
a representation of a green plant rather than a piercing trumpet? We propose to follow the same 
pattern for probabilistic representations. Our discussion is more focused on the questions of 
status, although we do not suppose that the issue of status and the issue of content are 
independent problems.  

We think that the motivations for accounts of representational status transfer over well to the 
probabilistic case. A representation doesn’t simply carry information, but rather functions to 
carry information in a systematic way and in an exploitable form - an idea that can be 
developed in different ways (see Shea 2018 for extended discussion). The information is there 
“for the system” in some sense, and not merely for an external theorist trying to understand the 
system. Similarly, to get a richer notion of probabilistic representation, we want a sense in 
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which probabilistic information is not just relevant to the theorist analyzing the system, but is 
there “for the system” itself, as it were (Shea 2014 concurs, but adopts a rather different 
approach). We develop this idea in the next section. 

4. Robust Probabilistic Representations in Perception  

One indication that probabilistic content in the above sense is not “there for the system” is that 
it is entirely a matter of the objective statistical relationship between the state and the world, 
and need not in any way be reflected in the internal structure or functional role of the state. By 
contrast, subjective probability surely has much more to do with the internal use of a state.  

One familiar response to this observation is to introduce a consumer, or user - possibly a 
separate component of the system - that exploits the information in an appropriate way 
(Millikan 1989, Shea 2018). The obvious danger with this strategy is that the user is treated as a 
sort of homunculus. For example, in SDT and PPC we imagine a Bayesian observer who, in the 
decision stage, performs Bayesian calculations to extract the probability of certain elements in 
the environment from the firing patterns of neurons. But this is certainly an idealization. In the 
absence of a user of this sort, what kind of use would we need to see in the system to judge that 
it is indeed exploiting probabilistic information?  

One option is to take a look at the actions that the signal prompts. So, for example, it might be 
that fleeing is appropriate (e.g. adaptive) when the chance of a predator is above 50%, and that 
fleeing is prompted by a signal above a certain threshold. The trouble here is that this “use” of 
the signal is so thin that it is unclear we are in different territory from examples like cells 
responding to chemical cues. It’s a mere behavioral switch.  
 
As we see it, there are several related ways to get a more robust kind of use of a probabilistic 
state. One is if the signal is used in a wider range of probabilistically appropriate computations. 
Another is if the content is used in a more flexible context-dependent way by the system - 
particularly, in a way that takes into account what else is represented about the world and the 
organism's needs. Another is if the consumer includes a subject or system that uncontroversially 
has credences or credence-like representations, and they form these in an appropriate way in 
response to the probabilistic -states (so we really do have something a bit like a homunculus 
consuming the representation). 

To illustrate the first two constraints, and to stick with a SDT-style example, suppose an 
organism has a detector signal for a food source like a fruit. A crude use of the signal would be 
a seeking behavior if the signal exceeds a certain threshold. A more sophisticated use might 
enable the organism to take into account the prior probability of a fruit present in this context, 
how important the food source is given their current needs, and allow graded variety in behavior 
depending on the posterior chance of fruit - e.g., a low signal might merely prompt an attempt at 
getting a better look, a high signal might prompt a fruit-fetching behavior - all provided a fruit 
fits the organism’s current needs. An even richer representational use might also allow the 
system to compare and integrate this information source with other information sources 
regarding the fruit-status of the target (e.g., smell), and to reason in more sophisticated ways 
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about what behavioral options are available - taking into account, for example, the different 
possible uses of the fruit - e.g. feeding it to offspring - or planning to retrieve it later when it is 
more needed.  

What these considerations already suggest is that there is not a clear dividing line between 
crude relay switch type uses of probabilistic information, and more sophisticated 
representational uses - it is a matter of degree, depending on the extent to which a state is used 
in these richer ways. At this point it is worth noting that our sub-personal perceptual 
probabilistic- states, as states of perceptual processing in general, are likely to be at least 
somewhat further towards the relay-switch end of the spectrum than personal-level credences, 
because in general perceptual states in sub-personal systems are used in a less flexible, more 
stimulus dependent way, and may not be able to take into account utilities or as rich a range of 
sources of relevant information. 

As for the third way of getting a more robust kind of use of a probabilistic state, if we are 
dealing with a human-like subject that has credences, then a perceptual signal potentially gets a 
kind of derivative status qua probabilistic representation from its role in generating credences. 
So for example, if our signal is a graded fruit perception that leads to different degrees of belief 
that a fruit is present, then it is being used by a consumer in a way that is akin to a person 
reading a windmill, that it is being used as a representation in a fairly literal,  quasi-homuncular 
way. 

Even with these more robust constraints in place, there is a danger of incorrect classification, a 
point on which we will return when we discuss experiential credence. There are examples 
where we have a variable weighted representation, but its primary role is simply to indicate the 
magnitude of an external feature (for example, distance, intensity or brightness), and not to 
represent probability. If the magnitude of the feature correlates with the probability of a 
relevant hypothesis (e.g., the more intense a cue is, the more likely it is that the source of the 
cue is dangerous) then the represented feature could be used contingently like a probabilistic 
representation. For example, the strength of an odor from a food source might tell an organism 
how likely it is that it is not safe to eat. If the organism acted in such a way as to be sensitive to 
the probability of poisonous food, then we might interpret this case as the organism being 
guided by a probabilistic state about the chances of poisonous food. But such a state might 
simply be formed on the basis of a perceptual state that is not itself probabilistic. This would 
count as a probabilistic use of a perceptual state, but there would only be a weak sense in which 
the perceptual state itself is a probabilistic representation.  

Examples of this kind suggest that to have a clear case of probabilistic representation in 
perception we would want to see a perceptual state that systematically and exclusively carries 
probabilistic information, where the information itself is being appropriately exploited in the 
system. In the example we just described, the representation of the intensity of a smell does 
systematically co-vary with the probability of the food being dangerous, but it does not 
exclusively play a probabilistic role (intensity does not always correlate with poisonousness). 
Exclusivity will be important below in considering conscious perceptual probability. 
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As for systematicity, it is a central feature of analog representation (Beck 2019). Whether we 
are dealing with a feature space (e.g., spatial distance) or a space of probability density 
functions, if differences in the target space are marked in a systematic way in our 
representational scheme, this makes the scheme more apt for performing computations that 
appropriately reflect the structure of the space. Arguably, the kind of systematicity that we see 
in our models of probabilistic representations is structural resemblance between the target and 
the representational vehicle, of a kind that is aptly thought of as a kind of analog 
representation. Moreover, the computational uses we have been describing are implemented as 
a form of analog computation. Let us elaborate. 

Analog representations, as we understand them, are representations that use a variable quantity 
in the vehicle (call this the “representational space”) to represent a variable feature parameter 
(e.g.  spatial distance, duration) (the “feature space”), where these representational contents are 
given by a structure preserving mapping from the feature space onto the representational space. 
In many cases, this is not a simple linear mapping – e.g. in classical psychophysics, features like 
brightness, perceived weight are thought to involve log or power psychometric function. But 
nonetheless, the mapping preserves structure in such a way that it can be used in an informative 
way to perform truth-preserving computations, or to guide action or decision making in an 
appropriate way. For example, if I have a monotonic psychometric function for a 1-dimensional 
quantity like spatial distance, I can compute which of two spatial distances is larger by 
computing which of their representations has a larger value. In what follows, we will take (1) 
structural preserving mapping, and (2) appropriate use/exploitation of this mapping in 
computation / downstream process, as the two hallmarks of analog representation.5  These are 
very much not independent constraints; as many authors have pointed out, the existence of 
many structure-preserving mappings from vehicle to target is often completely trivial. What 
matters is that a particular structure-preserving mapping is actually made use of by the system 
in the kind of appropriate ways discussed above.  

The idea can be extended to probabilistic representation in a fairly obvious way. Instead of a 
space of features, we have a space of probability density functions, and we are interested in 
structure preserving mappings from this space onto representational spaces, such as spaces of 
vectors of neural firing rates, or just individual firing rates. Because the points in these spaces 
are themselves structured objects (unlike in the case of simple features), these mappings will 
also typically require that individual probabilities in the density function are mapped 
systematically onto relevant aspects of the representational object, such as the firing rates that 
form representational vector (although this need not be in the simple form of a linear or 
monotonic function from probabilities to firing rates, as we will see below); so in a sense we 
have systematic mapping at two different levels here.  Furthermore, we can appeal to the ways 
in which a mapping is appropriately exploited (e.g., in the ways described above), selecting it as 
a content for the analog representation. For example, there may be a range of computations on 
an analog representation that respect the relevant norms of probability given a particular 

 
5 Some authors in the philosophical literature describe a notion of “structural representation” where the mapping that 
semantically individuates the representation is from concrete objects and events and their relations to relations between 
representations in the brain (e.g. Shea 2018). This is not the notion of analog or structural representation we are operating 
with here, where the mapping is from members of a space of stimulus features to representational features. 
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mapping onto a probability density function.    

In what sense do the probabilistic- states in our models involve (or not involve) such analog 
probability representations? One thing to reiterate here first is that none of the models include 
any kind of analog representation of the worldly states, only of probabilities or other 
probabilistic parameters. So, for example, we have an analog representation of a certain spatial 
distance having a certain probability only in the sense that we have a variable parameter 
encoding probability, but not one encoding spatial distance in an analog way. The models are 
typically silent as to how these other parameters, such as spatial distance are encoded. They 
could be coded in a non-analog way, e.g., by different neurons representing different distances. 
If a separate explicit representation of distance (e.g., an analog one) was added to the analog 
probability representation, then we would have a state much more akin to a paradigm credence 
– but none of the models postulate such a further component. The models tend to just assume 
we start out knowing what worldly elements neuronal populations are tuned to.6   

Let’s assume to begin with that the variable signals postulated in our models are variable 
physical quantities like firing rates, and so this aspect of the “analog representation” model is 
satisfied. The issue then is the sense in which the models involve an appropriately exploited 
structure-preserving mapping onto this physical quantity. This “signal as variable physical 
quantity” assumption will then be revisited below.  

Bearing this in mind, let’s look at the models. Start with SDT. Again, the way the theorist 
typically thinks of this is in terms of separate stimulus-to-signal likelihood functions for target 
present and target absent (see fig. 1). For each signal value, we can compare these likelihoods, 
by taking their ratio. Target present is more likely than not when the ratio gets above 1 (i.e., 
above 50/50). If we assume a flat prior, then this ratio is linearly related to the ratio of posterior 
probabilities of target present / target absent. This means we can also take each signal value to 
correspond to a posterior probability of the target being present – the stronger the signal, the 
more probable it is that the target is present. Is the signal therefore an analog representation of a 
likelihood ratio, or of target posterior?  

From what we just said, we clearly have the structure-preserving mapping onto a variable 
physical quantity, but is it exploited or used appropriately? Here we simply reiterate what we 
said earlier - basic binary decision making given a criterion is a very thin use, but we can 
imagine ways in which a signal could in theory be used in a more richly representational way, 
although this is not typically modelled very extensively in classic work on SDT.  

This is less of an issue for probabilistic population codes, to which we now turn. Here recall 
that we have an initial stage with a bank of neurons with different tuning curves, responding 
with Poisson-like noise. We can then calculate log likelihoods of different stimulus values as 
weighted sums of firing rates, potentially leading to a second stage where we have a population 
code where each neuron directly represents the log likelihood of a different hypothesis (Jazieri 

 
6 One of us finds this feature of the models to raise questions about their aptness to adequately explain how distal 
conditions are represented given underdetermined stimulation. It seems that the models assume rather than explain 
what distal elements are represented by populations of neurons. We do not have space to expand on this point here.   
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and  Movshon 2006). 

 
If we have this second stage direct representation of log likelihood, this satisfies the structure 
preserving property of analog representation in a clear sense. If we assume a flat prior 
distribution, then this is also proportional to the log posterior distribution, so we have structure 
preserving mapping of posterior probability in a straightforward sense also. What about the use 
criterion? There are possible computational uses of the log-likelihood distribution that respect 
the norms of probability. We can calculate maximum likelihood by looking at the peak of the 
curve.  We can compute the likelihood ratio of two hypotheses by subtracting their log 
likehoods (i.e.  subtracting firing rates), and we can multiply probabilities by adding log 
likelihoods (i.e., adding firing rates). This means that computations like integrating distributions 
from different modalities, integrating information coming in over time along a single channel, 
or calculating the probability of functions of variables (e.g. the probability that two variables 
sum to a certain value), all can be done with fairly simple linear operations on firing rates – this 
is the big selling  point of this scheme (Pouget et al 2013, Ma and Jazayeri 2014). Furthermore, 
these simple operations on firing rates (addition and subtraction) are paradigms of analog 
computations; so, an analog implementation is a major motivation for the theory.  

What about the first stage population code? If this is to be thought of as an analog 
representation of likelihood (or log likelihood), it is so in an interesting indirect sense. It is not 
that each firing rate represents the likelihood of a given hypothesis. Instead, we can think of the 
likelihood function as a sum of weighted basis functions (a minimal set of functions such that 
every other function can be expressed as a sum of these functions), with each neuron 
representing one of these weights (Pouget et al 2013). That is: relative to a set of basis 
functions, a given likelihood function is a vector representing the weights of the different 
functions in the sum; each neuron is associated with a different basis function, which can be 
thought of as representing, for each stimulus value, this neuron’s importance in the calculation 
of the likelihood of that stimulus value at the decoding stage – i.e., roughly, how much that 
neuron responds to each stimulus value. The firing rate then gives the weight of that basis 
function in the calculation of the likelihood function. 

Given this change of basis, operations on probability functions correspond to transformed 
operations in this alternate vector space. The fact that we can use such transformed operations is 
what makes this still a “structure-preserving mapping” in a sense still in the spirit of the idea of 
analog representation; indeed, this kind of point was already true in the simpler case of the 
second stage population code, where multiplication and division were transformed into addition 
and subtraction by taking the logs of our probability functions. Now, since there is a linear 
transformation from our first-stage weird basis functions into the second stage log probability 
basis functions, multiplication and division on probability functions at our first stage *also* 
correspond to addition and subtraction on these less familiar vectors. So, all the computations 
we could do in a simple linear way after we got to the second stage, when we had log likelihood 
directly represented, we can also perform before we decode to log likelihood. For example, we 
can integrate probability distributions across sensory modalities, or integrate information over 
time using simple linear operations. So that means that most of the computational “uses” we 
could make of the log likelihood representations we can also make of these funny 
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representations – we don’t need to decode them first7. We have spelled this out here to illustrate 
how the “structure preserving” mapping involved here can be far less obvious than, say, a 
simple linear map from probabilities onto firing rates.  
 

Now let’s turn to the sampling models. Recall that here we have a process that aims to produce 
a set of representative samples from a posterior distribution. They can be “representative” either 
in the sense that there are proportionally more of them where probability is higher, or we have 
weights on the samples that play the role of “number of samples”. The samples could be 
diachronic - e.g., the firing rates of a neuron at n different times could be used as n samples 
from a target posterior, provided the distribution of firing rates over time matches the shape of 
the posterior we are interested in. Or they could be synchronic – e.g., the firing rates of different 
neurons in a population at a time can be treated as weighted samples from a distribution. As 
mentioned above, in the synchronic case, we often have an algorithm like a particle filter that 
starts with quite random unrepresentative samples, and then gradually refines them into a more 
representative set, using a “testing and resampling” procedure.  

Although our samples give us a fairly literal representation of the posterior, we have to be a 
little bit careful about the sense in which there is a “structure preserving mapping” here. 
Because we may not have samples corresponding to every hypothesis in the state space, the 
samples are a discrete approximation of the full posterior. This is rather like the situation when 
we represent a continuous physical variable using a discrete analog representation – e.g., we 
represent height by piling uniformly shaped bricks one on top of another. This is recognizably a 
kind of structure preserving mapping, but not one with a one-one mapping from stimulus 
feature space to representational space. There are also subtleties about what probabilities are 
represented for hypotheses for which we happen to have no samples. As mentioned above, one 
would probably not assign these zero probabilities, but calculate their probability as an 
interpolation of sample densities as nearby values – that is, we assume that the represented 
probability function is fairly smooth and regular.  
 

Whether the system really “makes assumptions” of this kind depends again more literally on 
how the samples are actually used. An important preliminary point about use/exploitation is that 
a temporal sequence of samples can only be used by the system if there is an appropriate 
integration mechanism that counts or otherwise integrates information about the distribution of 
the samples. This synchronically integrated version of the samples is used more directly to 
guide downstream processing. It is therefore a better candidate for a state that is exploited as a 
representation, and a more interesting target for the kind of theoretical questions we are asking 
here - we therefore set the diachronic sampling case aside (see Lee (2014)) for an analogous 
point about temporal representation in perception).  

 
7 That said, of course if we want to decode likelihood directly (e.g., to figure out maximum likelihood), we will have 
to perform the linear operation that converts the first stage function into the log likelihood function, and then e.g., 
extract the maximum from that. So, if “relevant use” includes explicitly extracting and representing likelihoods or 
probabilities, this further decoding process will have to occur. 
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Sampling-based codes can be used in computations that respect probabilistic norms, much as 
with PPCs. The difference is that the mapping function and discretization makes them better 
suited for different kinds of computations than PPCs. For example, whereas multiplying and 
dividing probabilities is easy using PPCs (because they use log likelihoods), adding and 
subtracting probabilities is easier with samples (because you can just add and subtract numbers 
of samples). Samples are also easier to use for computing marginal probabilities (as when you 
compute the probability of a function of variables, like the probability that the sum of two 
variables sums to a certain number), and have computational advantages when it comes to the 
operations involved in learning (i.e. updating conditional credences) (Fiser et al 2010).  

In the preceding, we have been assuming that the “signals” in SDT, PPC and sampling models 
are variable physical quantities (e.g., firing rates), a crucial part of the notion of “analog 
representation”. This is strictly speaking a claim at the implementational level, because it tells 
us about the character of the vehicles of representation. We think this is typically assumed by 
proponents of our models, and justifiably, because it does explanatory work. How so? Note that 
a “thin”, purely algorithmic-level reading of each of the models is possible, that is neutral on 
this implementational issue (thanks to Jake Beck for pressing us on this). We can then ask what 
is lost explanatorily from such a thin interpretation. Consider, for example, the signal in signal 
detection theory. It is typically assumed to be a variable physical quantity, like the firing rate of 
a neuron or the speed of a windmill, of the kind suited to be an analog representation. But one 
could imagine instead, say, a display with digital numbers on it, and a threshold for a decision 
being based on the number represented on the display being above a certain number. Provided 
we can model the variability in the digital signal in the same way we could an analog signal, 
SDT still applies here. Similarly, one could have a probabilistic population code model on 
which the elements in a code are digital signals rather than analog signals like neural firing 
rates. What would be lost from leaving open the possibility of such an implementation? 

There are different answers for the different models. In the case of probabilistic population 
codes, as we mentioned, a selling point of the scheme is that many operations on probability 
distributions are reduced to linear operations on firing rates (e.g., adding them or subtracting 
them), which are known to be easily implemented in the brain, and which are a classic example 
of analog computations. So here we have a crucial bottom-up motivation for the view which 
appeals to the implementational level. Similar points can be made about sampling models: in so 
far as number of samples is the variable quantity used to represent probability there is clearly 
not an alternative implementation that does not use this variable quantity, and still is 
recognizably a sampling model. With the variation on which weighted samples are used, one 
could in theory have “digital weights” that are not variable physical quantities, but the latter are 
probably motivated by considerations of neural implementation of the relevant computations 
(e.g., adding weights) in a way similar to the case of PPC. 

The trickier case for us is signal detection theory. If the only use of the signal is to make a 
binary decision using a threshold (a very thin use), then there’s no reason why this computation 
couldn’t be done using a digital representation of signal magnitude, rather than a physical 
magnitude directly. So, in a sense, SDT qua theory could be said to be neutral on whether the 
signal is analog or digital (“it’s just a bunch of math!”). That said, in realistic settings in the 
human brain, there are typically features of the model that favor an analog interpretation - for 
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example, the assumption of normal noise might be best explained by an analog neural signal. 
Furthermore, once we get to the richer kinds of computational use of the signal we mentioned 
earlier, there could be computational motivations for regarding the signal as analog (e.g., if the 
threshold is computed using a prior). We think it’s probably best here to just distinguish 
between a thin SDT model that is implementation neutral and a thick version which assumes an 
analog signal: our comments above concern the thick version of the view. 

Now, as mentioned, synchronic sampling codes, PPCs, and SDT-style signals could also all get 
representational status by being consumed at a personal-level. A particularly vivid way in which 
this might happen is if they contribute to the phenomenology of experience, so that uncertainty 
is in some way represented in the content of experience.  But what would it take for that to 
happen, and what reasons do we have to suppose that it ever does happen? That is the subject of 
the final part of the paper. 

5. Uncertainty in Conscious Experience  

Many theorists have the intuition that consciousness commits to a single definitive 
interpretation of the world, with no representation of uncertainty (Block 2018, Clark 2018). 
Others have argued in favor of uncertainty in experience, holding a view on which experience 
can assign degrees of confidence to propositions in a way analogous to degrees of belief 
(Morrison 2016, Morrison Manuscript) and Munton (2016)). This is the version of “experiential 
uncertainty” we will consider here, although probability could in theory show up in experience 
in other ways (for example, mean and variance could be explicitly represented). A distinctive 
feature of this debate is that it can be hard to know what we are looking for - what would 
experiential confidence feel like, or what would it consist in? Our goal is to answer this 
question rather than the question of whether experiential confidence exists (in line with our goal 
earlier in the paper). Nonetheless, for this purpose it will be useful to consider two arguments 
that it exists, the basing argument (Morrison 2016) and the pipeline argument (Morrison, 
manuscript). This is because these arguments can be seen as recommending that we interpret 
certain experiences as involving experiential credences - a recommendation we will reject given 
our positive account. We are open to the possibility that experiential credences are at least 
possible however, as we discuss in the final section. 

In line with our proposal in the previous section, our view is that experiential confidence should 
be understood as a variable phenomenal property (i.e., a feature that contributes to how a 
perceptual experience feels subjectively) that exclusively and systematically plays the role of 
indicating a level of confidence, in the manner of an analog representation. Importantly, we 
remain non-committal as to what this phenomenal feature would feel like. For example, we are 
not committed to the view that the phenomenal feature would feel “confidence-like”, or that it 
would be a feeling of certainty that a certain environmental element is present. We think the 
subjective consideration that we do not seem to find a feeling of certainty (or uncertainty) in 
perception is a red herring. We think that perceptual experience would be probabilistic in an 
appropriately robust sense if there were a phenomenal feature that functioned as an analogue 
representation of probability, whether or not that phenomenal feature is described by subjects as 
feeling of confidence. That having been said, as we will see, there are also weaker senses in 
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which we can “experience probability”, but they are much less interesting, and will be 
acceptable to most theorists.  

On a strong reading of our proposal, it amounts to the requirement that there are phenomenal 
features of experience that are intrinsically probabilistic states, or probabilistic states that are 
fully grounded in phenomenology – a kind of “phenomenal content”. A weaker view would be 
that there are phenomenal features that play the role of probabilistic states (e.g., they are the 
vehicles of probabilistic states), but they are partly probabilistic states in virtue of their extrinsic 
features like their functional role.  Let’s call these strongly phenomenal and weakly phenomenal 
experiential confidences.  

The trouble with strongly phenomenal confidence is that it’s unclear whether any of the more 
important kinds of content that experience has are strongly phenomenal (see Papineau (2021). 
For example, one of us doubts that even things like spatial and temporal contents are fully 
grounded in phenomenology.  We don’t want to build any such strongly intentionalist view of 
phenomenal properties into the issue we are considering. The trouble with weakly phenomenal 
confidences is that they raise the question of what exactly counts as phenomenology playing a 
confidence-like role. It is at this point that we propose our positive view. 

The contrast between our view and a weaker view of experiential credence can be illustrated by 
considering some of the intuitive examples that are sometimes used to motivate experiential 
credence. These examples tend to involve either uncertainty in a categorization of an object – 
for example, recognizing a friend – or a comparison of features, for example, “line A is longer 
than line B”.  

(1) Is that Kendrick I can see over there? (categorization) 
(2) Is this musical interval a perfect fifth? (categorization) 
(3) Is line A or line B longer? (comparison) 
 
In these examples, if I form an unconfident judgment (e.g., being 50% confident that this is 
Kendrick), this judgment is in some sense based on experience; it’s not like we have a kind of 
“blindsight” here where the judgment feels like direct intuition about the world that just comes 
to us.  
This has led some theorists to argue that we must be endorsing our experience in these cases, in 
the strong sense that there is e.g., an experiential confidence of 50% that this is Kendrick. 
However, prima facie, these examples can all be naturally interpreted as involving a decision or 
categorization process that operates on an experience of features which does not itself involve 
confidences. In the “Is it Kendrick?” case, for example, we can imagine a face (or person) 
recognition neural net that takes as input a representation of lower-level features of a person – 
e.g., spatial features of the face, things like hair color, manner of walking, etc. – and outputs a 
certain confidence that a particular person is present. If at a distance there are only fairly sparse 
or determinable features represented, this may result in only a low or middling confidence. In 
this case, the lower-level features could be phenomenally experienced, and feel to the subject 
like the rational basis for their judgment – but that does not require that there is a separate 
element of experience that is a systematically varying confidence-about-Kendrick phenomenal 
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parameter.8  
 
A similar model works well for comparison examples. For example, two spatial distance 
experiences of lines A and B might be grounded in two representations that feed into a 
subtraction process generating a signal used to decide whether A or B is longer in a way that 
involves probability. There is no need to suppose here that this signal is itself perceptually 
phenomenally present, as opposed to the representations underpinning the individual distance 
experiences (see Beck 2020 for a similar take).  

It’s important to distinguish different reasons why categorization or comparison might lead to 
lack of certainty. Examples like face-recognition suggest an optimized or quasi-rational 
response to a lack of information about features relevant for classifying. But there are at least 
three other cases. One is when the stimulus is a borderline case of a category. The second is 
when there is noise in the categorization or comparison process itself. For example, if we have 
two feature representations that might lead an ideal Bayesian interpreter to judge that A is 
greater than B with 55% confidence, noise in the comparison process itself could lead to lower 
confidence in a real observer. The third case, which we think is particularly interesting and 
overlooked, is when the system has not fully learned the relevant categorization skill. Musical 
interval perception and categorization is a great example of this. Categorizing musical intervals 
is a fairly difficult skill to acquire that requires a lot of practice. This is the case, even when we 
have completely clear perception of the pitches of individual notes, so that their interval is a 
trivial consequence of how they are perceived. For example, I might clearly perceive a middle 
C, and immediately subsequently (or even concurrently) perceive the G one perfect fifth above 
it, but be uncertain whether the interval I hear is a perfect fourth or a perfect fifth. To sum up, in 
addition to lack of information, three reasons for cognitive perceptual uncertainty are borderline 
cases, decision process noise, and underlearning. 
 

Again, these are not cases where the cognitive uncertainty feels to the subject like it is blind, 
coming from nowhere, and not based on experience. On the contrary, one would typically be 
attending to one's experience and feeling like the judgment is “based on experience” in these 
cases.  Nonetheless, one can question the inference to the claim that confidence itself is 
phenomenally present.  The musical interval example is perhaps the most compelling in this 
respect. One has a completely clear perception of the notes, and even (perhaps) perceives that 
as a perfect fifth, in a non-cognitive sense. Still, the conversion process required for 
categorization can be highly imperfect in a way that leads to great cognitive uncertainty about 
what is perceived.  

If such a “basing” scenario is not sufficient for experiential credences, what is? As with 
theorizing subpersonal subjective probabilities, we think that there are more or less robust ways 
of making sense of phenomenology playing a confidence-like role. The examples we just 

 
8 Notice also that there is no need for background beliefs or background information explicitly represented in 
cognition to be playing a role here, as Munton (2016) and Morrison (2016) suggest. The only “background 
assumptions” are those that the design of the recognition-net implicitly relies on, given the setting of its connection 
strengths. 
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considered suggest that a thin way of construing this claim, on which it is sufficient that the 
experience be the input into a computational process that outputs a judgment-level confidence 
or other graded behavior, is too weak to be interesting. To be sure, this gives us a fairly strong 
kind of access-consciousness (the delivery of information from perceptual to cognitive systems 
involved in reasoning, planning and memory consolidation) for probabilistic information, where 
this access involves a cognitive state that is based on a phenomenal state. But this doesn’t seem 
to be sufficient for the probabilistic information to be explicitly represented in the experience - 
we have access consciousness without phenomenal consciousness. But what does that mean - 
what more would that take?  

Following extant literature in cognitive neuroscience, Morrison (manuscript p. 12) holds that 
phenomenal contents are represented explicitly when they are “useable in inference”. By this, 
what is meant is that a representation contains probabilistic information in a form that could in 
principle be decoded in a relatively small number of computational steps with little or no 
extrinsic information. However, applied to experience, this criterion alone doesn’t take us 
beyond the kind of access-consciousness we find in the face-recognition case (interpreting it in 
our sceptical way). This would make the claim that experiential credences exist both very 
uncontroversial, but also much less interesting. This is why we propose that experiential 
confidence must involve phenomenal features of experience that are analog representations - 
they systematically and exclusively play the role of confidences, in addition to playing the kind 
of computational role Morrison describes.  

To further illustrate the point, consider a situation where an organism learns that the colors of 
certain boxes involve different chances that a reward is inside the box. This seems to be a case 
where, in context, the color representations contain probabilistic information in a form that can 
be decoded in a relatively small number of computational steps to deliver cognitive level 
credences. These color representations would then count as experiential credences in the sense 
described above, even though intuitively they are just color experiences. One reason this 
intuition seems right is that color experiences do not indicate confidences in other contexts: so 
they aren’t exclusively playing a confidence role; rather they are playing the role of presenting a 
feature of the object which can then be used to form credences about the presence of a reward. 
Another is that the colors need not be systematically related to the resulting confidences - 
similarity and difference in confidences need not map directly onto color similarity in this case.9 

Faced with an alleged case of experiential credence then, we think that the right question to ask 
is whether a stronger condition like this is met, or whether we are really dealing with something 
more like the colored box case. Is the subject really endorsing a confidence that is explicitly 
manifested in the character of experience, or merely basing their judgment on experience 
without endorsing the experience (as we might put it)?  

 
9 Note that above when we discussed PPC representations, we saw that although a “change of basis” was needed to 
explicitly decode log likelihoods, these representations were already useable in probabilistic inference without the 
need for prior decoding. This also suggests we should be open to the possibility that what is phenomenally present 
corresponds not directly to probabilities, but to  a systematically related quantity (log liklihoods would be another 
example related to PPCs).  One should also note that in the box-color example, the states themselves are also not 
phenomenally represented – there is no separate phenomenal element that means “reward” or some specific kind of 
reward.  
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Morrison, in more recent work, would agree with us on this point. He gives an argument for 
experiential credence that does not conflate access and phenomenal senses of “consciousness”. 
Morrison looks at cases where probabilistic information is arguably represented by subpersonal 
processing upstream or coincident with the representations that ground experience, and where 
that same probabilistic information is made available to cognition downstream. His argument is 
that a plausible inference-to-the-best-explanation is that this content is fed through experience 
into cognition. We will refer to this argument as the “pipeline” argument.  

On a weak reading of this argument, “going through the pipeline” merely requires that 
probabilistic information implicit in subpersonal states be made explicit by the processing 
leading to cognition, and therefore access conscious. This would be vulnerable to the objections 
we just made. We think the argument is more compelling if we interpret the upstream states as 
systematically and exclusively representing probability in something like the way that we 
described in the previous section. If confidence is explicitly represented in this strong sense 
throughout the stages of processing associated with conscious experience, that does indeed give 
us some prima facie reason to think that this is manifest in phenomenology in some relevant 
sense.  

However, what we find less compelling are the actual cases where this is supposed to occur (see 
also Siegel 2020). The cases considered above such as face recognition are not those that 
Morrison appeals to; his interpretation of these is only indirectly supported by the argument. 
One might think that this is because the process leading to, e.g., an uncertain face-recognition 
judgment is clearly downstream of experience (it takes perceived low-level features as input), 
and so the argument doesn’t apply - we return to this point below. 

Let’s consider a case where the pipeline argument is supposed to work. Morrison thinks that 
certain inter-modal integrations, where the system combines information from different sensory 
sources about a single target feature, are going to have the right features. In some of these cases, 
the perceptual system appears to be sensitive to the amount of noise in these different channels, 
and uses it to weight the channels in a rational way (relatively noisier channels get 
proportionally less weight). Morrison argues that these noise representations are fed through the 
pipeline into cognition – so we experience noise levels in some sense. An example is a visual-
vestibular integration experiment by Fetsch et al (2012), where a subject is on a moveable 
platform looking at target stimulus of moving dots, and has to determine which way on average 
the dots are moving based on (possibly conflicting) visual and vestibular cues. The 
experimenters manipulate the amount of visual noise by manipulating the stimulus – e.g. they 
change the level of coherence of the dot motion (as Morrison notes, they could have also added 
vestibular noise by, e.g. adding vibration). The idea is that the process integrating these signals 
based on their noise levels is upstream of consciousness, and so there is an explicitly 
represented confidence associated with the feature direction of dot motion that is “fed through 
the pipeline” in the relevant sense, and so a strong candidate for being phenomenally present. 
 
However, the problem with this is that the subject experiences low level features - dot 
coherence, or level of vibration - that systematically correlate with the relevant noise 
parameters. Furthermore, the system could use these feature representations as a proxy for noise 
levels, even if they don’t primarily function to represent noise (e.g., they don’t do this 
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systematically or exclusively). So, there’s no good case for thinking that noise levels are 
explicitly experienced here (not that this was Morrison’s claim). Moreover, the process leading 
to uncertainty about direction of dot motion, since it is based on these other (conscious) feature 
representations, is downstream of experience. And so the pipeline argument would not seem to 
get a grip here after all; the case is too much like the “colored box” case.  
 
Morrison’s response to this (informal communication), is to say that, for the pipeline argument 
to work, it is not required that the processing that leads to uncertainty being explicitly 
represented be upstream of all conscious representations. It is only required that it is upstream 
of the processing that leads to whatever experience the subject has of the relevant feature (e.g., 
in this case, direction of dot motion). So, if we know that: 
 
(1) the subject experiences (in some sense) direction of dot motion  
(2) there is a computation of an explicitly represented confidence about dot motion that is 
upstream of the representational basis of (1),  
and 
 (3) this confidence is fed through to influence the subject’s confidence in judging direction of 
dot motion 
 
then we a have plausible version of the pipeline argument; that is, the experience in (1) involves 
an experiential confidence. We certainly agree that the argument, understood in this weaker 
way, would still be quite plausible. The trouble is that it’s now harder to be sure that (1) and (2) 
are both true in the relevant case. In particular, it’s not obvious that (2) is true; for example, it 
could be that the subject does not experience dot motion at all, and merely judges it, or it could 
be that the subject has separate modality specific experiences of dot motion that are merely 
rationally combined into a judgment by a process of inter-modal integration that occurs 
downstream of experience in the relevant sense. We don’t positively endorse these alternative 
interpretations, but merely want to suggest that more work may be required to rule them out. 
 
It’s worth commenting here that this weak version of the pipeline argument could actually be 
used in the face-recognition and categorization cases above. For example, even if experienced 
low-level features are an input into face-recognition, face-confidence could still “go through the 
pipeline” provided we (1) have an experience “as of Kendrick” and (2) computation of 
Kendrick-confidence is prior to this experience (if not all experience). What the debate might 
turn on, at that point, is whether we have any perceptual face-recognition phenomenology at all 
in addition to low-level phenomenology, and whether this phenomenology is a result of the 
same process that leads to unconfident Kendrick judgments. We think neither of these claims is 
obviously correct, but also not obviously incorrect either. Morrison’s pipeline argument 
therefore is at least still promising, once understood correctly.  
 
Finally, we think it is instructive to consider the case of blurry vision, which is a strong prima 
face candidate for involving a kind of perceptual confidence. Blurry vision is one of a class of 
cases where a neural representation is ambiguous between a probabilistic reading and a 
straightforward feature-representation reading involving feature-strengths (i.e., representations 
of contrast) - we call this strength/confidence ambiguity (Denison (2017) and Denison et al 
(forthcoming) both briefly float a similar idea). How the ambiguity is resolved depends on how 
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the representation is used; but this suggests that if it grounds an experience like an experience of 
blur, this experience does not exclusively function to represent confidence, and therefore is not 
a paradigm experiential confidence in our sense.  

Let us elaborate. Compare the case where you very clearly see the location of a thin line on a 
page, versus the case where you only have a quite blurry perception of its location. Blurry 
perception does not prima facie need to be understood in terms of confidence at all. It can 
simply be understood as a case where you have less information about the stimulus (technically, 
you perceive its lower frequency components but not its higher-frequency components – it is 
just like muffled auditory perception in this way). At this point there is already an ambiguity, 
depending on whether the stimulus is interpreted as simply objectively lacking these 
components (i.e., the line is printed blurrily on the page), or instead you interpret the lack of 
high frequency perceptions as indicating that there is more to be learned (e.g. by looking closer, 
or putting your glasses on). None of this yet involves degrees of uncertainty being represented 
in any robust sense though. Still, it’s at least conceivable that blurry perception could also 
represent uncertainty. How so?  

Suppose the blurry percept is partly realized by a neural population code. Crudely, suppose we 
are considering a small patch where the vertical line is, and we have a bank of neurons whose 
receptive fields vary horizontally across the patch. We get a very spread out firing-rate 
distribution with blurry perception, and a highly peaked one with sharp perception. Now, on 
one way of interpreting these neurons, they represent stimulus strength – that is, e.g., contrast in 
the preferred location in their receptive field. But since each is also driven to some extent by 
input from neighboring locations, they can also be given an interpretation in terms of 
probability of high-contrast, sharp line at a certain location. Compare the windmill example – in 
addition to being sensitive to wind direction, windmills are also sensitive to wind-strength. In 
our above example, we assumed that this was held constant, but it need not be. Thus, our bank 
of windmills could be ambiguous between a non-probabilistic representation of windspeeds in 
different directions, vs a probabilistic representation of what the predominant wind direction 
might be.   

Clearly, what kind of representation we have here depends on how the population code / 
windmill bank is used. If it is used flexibly for both strength and confidence purposes, it could 
even simultaneously be both kinds of representation.  

How does this affect the debate about perceptual confidence? Suppose we are thinking about 
phenomenally conscious blurry vision. If my experience is used in the right way, am I 
consciously perceiving a probability distribution over the possible locations of the line or edge?  

Notice that here there is no perceived property of the world that indicates that uncertainty is 
appropriate. Instead, it is a lack of perception of more fine-grained detail, detail which might 
antecedently be expected to exist, that is cue that perception is noisy. Moreover, the level of 
noise might be easily read out from the spread of the population code - and if this is 
phenomenally present, there could be a rather literal way in which noise levels are correlated 
with a feature of experience, which could thereby be thought of as an “analog representation” of 
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noise.  

Nonetheless, there are important caveats about embracing this as “experiential credence” in 
some sense. First, as Vance (forthcoming) emphasizes, if what is represented is noise, then this 
is technically a likelihood (the distribution of internal signals given a stimulus property), not a 
posterior; so, we are not attaching posterior probabilities to external states. This would still be 
probabilistic content represented in experience in a broad sense, however, that would be directly 
relevant to forming credences (e.g. ,if vision is unreliable, I should be less sure about judgments 
based on it).  Here the issues mirror those that we discussed above concerning the interpretation 
of population codes.  

Second, the core blurriness phenomenology here is still potentially fully explained by a non-
probabilistic representation that can be present without any probabilistic representation - 
namely, a representation of the lower-frequency spatial components of the spatial layout. The 
probabilistic gloss on this is much like the gloss on it by the system as perceptually-caused-blur 
as opposed to leaving it open whether the perceived blur is because the world is objectively 
blurry (as in looking at a blurry photograph), or because of a perceptual inadequacy (we 
probably also sometimes perceive things as objectively blurry - the photo example is a nice 
case). The tricky issue here is whether this “further interpretation” is enough to say that we have 
a different kind of experience in an important sense (e.g., does it make a further phenomenal 
difference?), despite a core phenomenal similarity. Similarly, what would count as using the 
experience qua representation of noise, such that the perception of blur counts as, or is a 
component of, an experience of noise? What difference is there between saying this and saying 
that the experience itself is simply a blurry spatial experience, and that the blur is a cue to what 
the noise is?   

It’s worth mentioning here the analogous case of auditory muffling, which is perhaps more 
intuitive. Prima facie, muffled auditory experiences just present the low-frequency components 
of the sound, perhaps leaving it open whether there are also unperceived high-frequency 
components. If an interpretation of the source of muffling is made by the system, (e.g. it’s 
because I’m listening from behind a wall, or I’m listening on poor speakers, or I have wax in 
my ears), this might affect the experience in some sense (e.g. if I think the sound itself is not 
objectively muffled, I might have a “sense of absence”), even though it’s also true that there is 
some core phenomenological sameness in the muffled phenomenology that is preserved. If we 
now add on the table the hypothesis that noise (a statistical property) is sometimes represented 
by the muffledness of auditory experience, a similar point applies. Muffled hearing is certainly 
a source of uncertainty - e.g., the unclarity about consonant timing and frequency distribution 
could make speech far more ambiguous. But what would count as the experience itself 
representing these kinds of uncertainty or noise, as opposed to this being merely a downstream 
interpretation?  

Much cleaner would be a case where we can vary the noise without also changing other kinds 
of contents (e.g., the high-frequency spatial or auditory components). Compare hearing the 
same story from a trustworthy source vs an untrustworthy source. Certainly, in theory one could 
have two channels that represented exactly the same contents, but one resulted from a much 
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noisier process, and so is more unreliable. If the system could be sensitive to this fact about 
itself, and this be fed through into perceptual experience, so that a distinctive phenomenal 
feature indicates noise level independently of features like muffledness or blurriness, that would 
be a far more clear-cut example of experiential probability. As it is, we have phenomenology 
that primarily has a non-probabilistic role, and which might sometimes have a probabilistic 
interpretation. We are not aware of any cleaner examples, and we think it would be unsurprising 
if noise is only accessible to the system through correlated feature representations. This 
discussion therefore suggests that we do not yet have any clear examples of probabilistic 
representation in experience in more than a quite limited sense.  

6. Restrictions on Consciousness  

What might explain restrictions on probabilistic contents in perception? First, let’s distinguish 
three views of what restrictions exist. On the Definitive view, perceptual experience never has 
probabilistic contents, always presenting a definitive interpretation of the world. On the 
Restrictive view, certain kinds of probabilistic content can show up in experience, but others 
can’t (for example, perhaps we can never experience a bimodal distribution, or we can’t 
experience higher-order statistics like variance). On the liberal view, there are no restrictions on 
the varieties of probabilistic experience. Restrictive views can be read with different modal 
strength. On an essentialist view, restrictions hold necessarily as a result of the nature of 
experience itself; a state simply could not be a conscious perception and also have certain kinds 
of probabilistic content. On a weaker contingentist position, the restrictions do not hold 
necessarily, but simply are the result of certain contingent features of our cognitive architecture.  

Suppose we hold a representational view of consciousness, in the sense that we think that 
conscious states are mental representations meeting certain further conditions that make them 
conscious – for example, they are globally broadcast, or they are targeted by higher-order  
thoughts (on many theories, this means they are representations that are consumed in a certain 
way). In principle, these further conditions could entail that essentialism is true. For example, 
Andy Clark (2018) proposes that conscious perception is definitive because its role is to guide 
action, and motor systems need a definitive take on the world in order to act on it. A strong   
version of this view would be a kind of essentialism on which being action-oriented in the 
relevant sense is essential to consciousness, and necessarily implies definitiveness. However, 
we suspect that this reading of Clark’s view is implausible, and that the same will tend to be 
true of other essentialist positions, if they are based on plausible views of consciousness. An 
appropriate test is whether we can coherently imagine a robot or alien that has a cognitive 
architecture similar to ours, including having representational states that play a similar 
functional role to our conscious states, such as being action-oriented, but which uses a wide 
range of probabilistic states for these purposes. Take Clark’s “action-guidance” proposal: there 
is simply no reason why, at least in principle, action can’t be guided by probabilistic 
information rather than a single definitive proposition about the world. This is already obvious 
from the way that our cognitive states can guide action without being definitive. When one 
thinks about other well-known proposals about the essential functional role of consciousness 
(e.g. global broadcast), the same point tends to apply. Of course, we don’t know what the 
correct theory of consciousness is, and so it could turn out to contain a relevant constraint; but 
we see no independent reason to believe this given the current state of play.  
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All this is not to say that there might not be contingent features of our human cognitive 
architecture that constrain the kinds of contents we can experience. For example, perhaps 
Clark’s action-guidance constraint is plausible given the (contingent) computational cost of 
keeping uncertainty in play.  In general, what kind of contingent constraints should we 
consider? We would distinguish input end constraints – constraints that come from the way 
contents are selected for consciousness – and functional constraints on the way information is 
used once it is conscious. On the input end, one hypothesis is simply that there do not exist 
probabilistic representations in a robust enough sense in perceptual processing for there to be 
candidates to become conscious (Denison et al. forthcoming suggest this position). Another 
input end constraint to consider is that there is a low bandwidth bottleneck for content to 
become conscious, and that the system deals with this by insisting on a definitive interpretation. 
On the function end, it may be that some or all of the uses that conscious information is put to 
are more easily accomplished with a definitive content, in a way that outweighs the cost of 
throwing away potentially useful probabilistic information.  

For example, Dehaene (2014, ch.3) suggests that  

“The function of consciousness may be to simplify perception by drafting a summary of the 
current environment before voicing it out loud, in a coherent manner, to all other areas involved 
in memory, decision, and action. In order to be useful, the brain’s  
conscious brief must be stable and integrative. During a nationwide crisis, it would be pointless 
for the FBI to send the president thousands of successive messages, each holding a little bit of 
truth, and let him figure it out for himself. Similarly, the brain cannot stick to a low-level flux of 
incoming data: it must assemble the pieces into a coherent story. Like a presidential brief, the 
brain’s conscious summary must contain an interpretation of the environment written in a 
“language of thought” that is abstract enough to interface with the mechanisms of intention and 
decision making.”    
 
Here it is worth explicitly comparing Clark’s “consciousness is for action” explanation with a 
broader kind of view that appeals to a range of different uses of conscious information. On a 
view like Dehaene’s, conscious information is broadcast into a global workspace, where it can 
be used by a variety of different cognitive processes, not just action control. It could be that it is 
this need for a “one size fits all post-perceptual uses” kind of representation which forces 
conscious content into a definitive form.  

Of course, one might reject the definitive view. Perhaps some uncertainty is phenomenally 
conscious. It is important to note, however, that any restrictions on probabilistic content raise a 
similar explanatory challenge to the one facing the definitive view, and similar kinds of 
considerations may be appealed to.  For example, keeping estimates of noise in play (e.g. in 
blurry vision) may be consistent with “one size fits all” even if keeping many hypotheses with 
separate probabilities in play is not.  

Our tentative rejection of essentialism partly depended on regarding conscious experiences as 
mental representations. Now, we suspect that the intuitive appeal of the anti-experiential-
credence view is partly related to the intuitive appeal of non-representational views of 
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consciousness like naïve realism.  If experience is just a direct confrontation with concrete 
features of the environment, then there is no room for hedging or uncertainty in it. Conversely, 
if we imagine a being with a more thoroughly probabilistic kind of perception than ours, such as 
our robots or aliens above, then surely they would be less tempted to regard experience as direct 
acquaintance with the environment, as opposed to a representational guide.  

Having said this, we do think that one possibility to take seriously is that conscious perception 
is contingently configured so that its phenomenal features always seem to present concrete 
external features of stimuli (it is “transparent”). This would have the result that, even if there 
were features of experience that played the functional role of representing uncertainty, we 
would not experience them as such, we would experience them as just presenting the stimulus 
as  configured a certain way (e.g. as blurry). This perhaps one promising way to explain the 
intuitive resistance or puzzlement many have to the very idea of experiential credences.  

7. Conclusion   

To conclude, we looked at 3 models of subpersonal probabilistic representations, and the case 
of probabilistic representation in conscious experience. Without assessing whether the models 
accurately portray sub-personal processing, we gave an account of the sense in which they 
postulate probabilistic representations. Although they are notably different from personal-level 
credences, the states introduced by the models can be regarded as analog representations of 
probabilistic facts. This is provided that, in addition to their analogue structure, such states are 
used computationally in ways that reflect their probabilistic interpretation.,. We then considered 
the case of experiential credence, concluding that although there are no totally clear-cut cases of 
experiential credence (or other kinds of probabilistic representation in experience), blurriness 
perception and related phenomena could be interpreted, in a fairly thin sense, as phenomenal 
representations of noise in the same  manner that population codes can be interpreted as analog 
representations of noise.  Restrictions on probabilistic representation in experience could be 
explained either by input-end restrictions (e.g., a lack of robust probabilistic representation in 
sub-personal processing), or by the need for conscious information to be formatted for diverse 
cognitive uses. These are contingent restrictions - as far as we can see, there is no reason why a 
possible being could not have a richly probabilistic form of experience, although it would 
probably not strike them as “direct confrontation with the world” in the way that our experience 
tends to.   
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